

February 7, 2023

Mr. Craig W. Murray, P.E. D'Huy Engineering, Inc. One East Broad Street, Suite 130 Bethlehem, PA 18018

Re: Project No. 16530 Earthen Berm Soil Sampling Rodney Reservoir Site 1500 W Ninth Street Wilmington, Delaware

Dear Mr. Murray:

Verdantas LLC (Verdantas) submits this report to document soil sampling conducted at the above-referenced site (the "Property" or "Site"), located at 1500 West Ninth Street at the intersection of North Rodney Street and West Ninth Street in Wilmington, Delaware. It is our understanding that soils from the earthen berm surrounding the reservoir structure are planned to be used as fill material following the demolition of the reservoir structure.

Soil sampling was completed in November and December 2022. The objective was to collect soil samples from the earthen berm for environmental analysis prior to reuse following demolition of the reservoir structure. The environmental soil sampling and analysis was performed at the request of the Property Owner, the City of Wilmington, to screen for environmental character of the soils prior to soil disturbing activities.

A. FIELD ACTIVITIES

On November 7, 2022 and December 19, 2022, Verdantas' subcontractor, Ground Penetrating Radar Systems (GPRS), completed an underground utility survey to pre-clear soil boring locations along the earthen berm surrounding the reservoir.

Following pre-clearing, Verdantas personnel completed 19 hand-auger soil borings in the following locations (see Figure 1):

Soil Boring Number	Berm Location	Depth of Boring (ft)	Refusal Encountered (Y/N)
SB-1	Northwest Corner	1.5	Yes
SB-2	Northeast Corner	4	No
SB-3	Southeast Corner	2	Yes
SB-4	Southwest Corner	1.5	Yes
SB-5	Northeast Corner	1.5	Yes
SB-6	Along N. Rodney Street	1.5	Yes
SB-7	Along N. Rodney Street	1.5	Yes

Soil Boring Number	Berm Location	Depth of Boring (ft)	Refusal Encountered (Y/N)
SB-8	Along N. Rodney Street	1.5	Yes
SB-9	Southeast Corner	1.5	Yes
SB-10	Along W. 8th Street	1.5	Yes
SB-11	Along W. 8th Street	2	Yes
SB-12	Southwest Corner	1.5	Yes
SB-13	Along N. Clayton Street	2	Yes
SB-14	Along N. Clayton Street	2	Yes
SB-15	Along N. Clayton Street	1.5	Yes
SB-16	Northwest Corner	1.5	Yes
SB-17	Along W. 9th Street	1.5	Yes
SB-18	Along W. 9th Street	1.5	Yes
SB-19	Along W. 9th Street	1.5	Yes

Four of the soil borings (SB-1 through SB-4) were completed on November 7, 2022. Following receipt of initial soil sample results, fifteen supplemental soil borings (SB-5 through SB-19) were completed on December 19, 2022, to provide additional soil data for statistical assessment of the analytical results.

During field activities, recovered soils were reviewed by Verdantas personnel for indications of environmental impact. A photoionization detector (PID) was used to evaluate the potential presence of volatile organic compounds (VOCs) in the soil borings. VOCs were not detected by the PID and no indications of environmental impact (e.g., odors, staining, debris) were observed.

Soils encountered during the field program generally consisted of topsoil from the surface to 0.5 feet below ground surface (bgs), underlain by reddish-brown sandy silt with gravel. Shallow refusal was encountered at depths between 1.5 - 2 feet bgs in all but one soil boring location due to the presence of 2 - 4-inch diameter stone.

One soil sample from each soil boring was collected for a total of 19 samples. Four samples (labeled SB-1 through SB-4) consisted of a composite sample representing the entire sampled depth and a discrete sample (e.g., grab) for analysis of VOCs. The remaining samples (labeled SB-5 through SB-19) consisted of one discrete sample. Collection of discrete samples was biased toward areas indicating the greatest environmental impact or at the terminal depth of the boring. Following sample collection, each soil boring was backfilled with soil cuttings to the ground surface.

Soil samples were submitted to Eurofins Environment Testing (Eurofins) for laboratory analysis of the parameters listed below. The samples were analyzed in general

accordance with clean fill testing requirements per the State of Delaware, Department of Natural Resources and Environmental Control – Remediation Section (DNREC-RS) Soil/Material Re-use Policy.

Four samples, SB-1, SB-2, SB-3, and SB-4 were analyzed for Target Compound List (TCL) VOCs (discrete samples), TCL semi-volatile organic compounds (SVOCs), TCL pesticides, polychlorinated biphenyls (PCB) aroclors, Target Analyte List (TAL) metals, and mercury. The remaining fifteen soil samples, SB-5 through SB-19, were analyzed for cobalt.

In addition, quality assurance/quality control (QA/QC) samples were submitted to the laboratory, which included, a trip blank for analysis of TCL VOCs for the November 7, 2022, sampling event and an equipment blank was submitted for analysis of cobalt for the December 19, 2022, sampling event.

B. ENVIRONMENTAL DATA SUMMARY

1. Analytical Results

Analytical results were compared to the DNREC-RS February 2022 Reporting Levels for Soil (Reporting Levels). Analytical results for detected compounds are summarized in Tables 1 and 2 (attached) and below. Due to file size, the analytical reports have been excluded from this report, however, copies of the November and December 2022 Eurofins analytical reports are available upon request.

Cobalt was reported at concentrations that exceeded the Reporting Level in two soil samples during the initial sampling in November. As a result, supplemental soil sampling was completed December 2022 to allow for an assessment of the potential impact of cobalt in the soils to human health and the environment.

a. TAL Metals, Mercury, and Cyanide

Multiple metals and mercury were reported in the soil samples. Only cobalt was reported at concentrations that exceeded the Reporting Level. Cobalt in five samples (SB-1-Composite, SB-4-Composite, SB-8, SB-11 and SB-15) was reported at concentrations ranging from 38.4 mg/kg to 59.8 mg/kg, which exceeded the Reporting Level of 34 mg/kg.

b. TCL SVOCs

Multiple SVOCs were reported in the soil samples, however, none of the concentrations exceeded the respective Reporting Levels.

c. TCL Pesticides

Pesticides were reported as not detected in the soil samples.

d. PCBs

PCBs were reported as not detected in the soil samples.

e. TCL VOCs

One VOC, methylene chloride, was detected in all analyzed samples. None of the reported concentrations exceeded the Reporting Level. Methylene chloride was also reported in the trip blank sample. Methylene chloride is a common laboratory contaminant and is unlikely to be present in soils on the Property.

C. RISK CALCULATION

Given the analytic results for cobalt, Verdantas quantitatively evaluated human health risk at the Site in general accordance with DNREC's "Guidance for Human Health Risk Assessment under the Hazardous Substance Cleanup Act" (HHRA Guidance), July 2020. The assessment considered the most conservative exposure scenario, residential land use.

Verdantas first input the maximum reported detection of cobalt (59.8 mg/kg) to the Delaware Risk Assessment Calculator (DERAC), a program developed by DNREC for use in human health risk assessments to provide quantitative assessment of cancer and noncancer risks. Using the maximum detected of cobalt in the calculator results in an unacceptable non-cancer risk. Following DNREC's policy and using all data collected for cobalt, a 95% Upper Confidence Limit (UCL) was then calculated using the USEPAdeveloped statistical software ProUCL 5.1 (ProUCL). The calculated 95% UCL of cobalt was 34.33 mg/kg, which was then input to the DERAC. The resulting cancer risk and non-cancer risk values (8x10⁻⁸ and 1, respectively) did not exceed the DNREC HSCA target cancer risk values of 1x10⁻⁵ and 1, respectively. Therefore, the risk calculation indicates that cobalt in soils does not pose unacceptable cancer and non-cancer risks under the regulation. A copy of the ProUCL input/output is included as Attachment B.

D. CONCLUSIONS

Verdantas collected soil samples from the earthen berm surrounding the Rodney reservoir in November and December 2022. Analytical results for the soil samples were compared to DNREC-RS Reporting Levels. No VOCs, SVOCs, pesticides, or PCBs were reported above the respective DNREC-RS Reporting Levels. Several metals were reported as detected, but only cobalt was reported at concentrations that exceeded the DNREC-RS Reporting Level.

A quantitative risk assessment was conducted using the calculated 95% UCL concentration of cobalt and a conservative, residential exposure scenario. The results of the calculation indicated that the presence of cobalt in soils does not pose an unacceptable risk to human health under Delaware's Regulations Governing Hazardous Substance Cleanup target cancer risk value and target non-cancer risk value of 1x10⁻⁵ and 1, respectively.

Due to the reported concentrations of cobalt exceeding the DNREC-RS Reporting Level, Owners or Operators are required to notify DNREC-RS in writing and 30-days in advance of any planned land disturbing activities at the Property. When the schedule is determined for the soil disturbance, we recommend contacting DNREC-RS and providing a copy of this report as soon as practical, to allow adequate time for review and discussion of the project prior to initiating site work.

We appreciate the opportunity to have been of service to you and look forward to providing you with continuing professional assistance with this project. If you have any questions or concerns with respect to this report or require further assistance, please do not hesitate to contact us.

Sincerely,

VERDANTAS LLC

Tre' Robinson Staff Engineer I

Robert B. Smagala Jr. Environmental Project Manager

TER/RBS:tm \\Verdantas.com\DFS\Project Files\16000\16530\Working\Report\Rpt-16530-20230207.docx

Attachments

Tables

Table 1: November 2022 Soil Sample Results Table 2: Cobalt Analytical Results November & December 2022 Sampling Events

Figures

Figure 1: Site Features Sketch Figure 2: Soil Sample Exceedance Sketch

Attachments

Attachment A – ProUCL Input/Output Attachment B – Risk Assessment DERAC Output

Tables

Table 1 - Confirmatory Analytical Detections November 2022 Sampling Event Rodney Reservoir Site, Wilmington, Delaware

Client ID	DNREC-RS		SB-1		SB-2	5	B-3	SE	3-4
Lab Sample ID	Reporting Levels	460-2694	145-1	460-269	445-2	460-26944	15-3	460-269445	5-4
Samplina Date	Soil	11/7/	2022	11/7	/2022	11/7/2	022	11/7/20)22
Matrix	February 2022	,.,	Soil		Soil		Soil	S	Soil
Unit	ma/ka	m	a/ka	m	na/ka	mc	/ka	ma/	'ka
		Result	0 0	Result	S, IS	Result	Ω	Result	0 0
Taraet Compound List (TCL)	Volatile Organic Compounds	s (VOCs)					-		-
Methylene Chloride	350	0.11	J	0.093	J	0.047	U	0.1	J
Target Compound List (TCL)	Semivolatie Organic Compo	unds (SVOCs)					-		_
Acenaphthylene	3600	0.012	U	0.012	U	0.011	U	0.036	J
Anthracene	18000	0.026	J	0.012	U	0.012	U	0.16	J
Benzo[a]anthracene	11	0.19		0.014	J	0.031	J	0.60	
Benzo[a]pyrene	1.1	0.19		0.011	U	0.026	J	0.40	
Benzo[b]fluoranthene	11	0.24		0.012	J	0.034	J	0.57	
Benzo[g,h,i]perylene	-	0.083	J	0.012	U	0.012	J	0.12	J
Benzo[k]fluoranthene	110	0.11		0.0079	U	0.013	J	0.19	
Carbazole	-	0.015	U	0.015	U	0.014	U	0.021	J
Chrysene	1100	0.18	J	0.0083	J	0.029	J	0.51	
Dibenz(a,h)anthracene	1.1	0.023	J	0.017	U	0.016	U	0.047	
Fluoranthene	2400	0.43		0.014	U	0.053	J	1	
Fluorene	2400	0.012	U	0.012	U	0.011	U	0.047	J
Indeno[1,2,3-cd]pyrene	11	0.10		0.016	U	0.016	J	0.19	
Naphthalene	20	0.0070	U	0.0070	U	0.0066	U	0.012	J
Phenanthrene	1800	0.12	J	0.0071	U	0.033	J	0.53	
Pyrene	1800	0.36	J	0.011	J	0.041	J	0.72	
TCL Pesticides									
No Pesticides detected in a	inalyzed samples.	ND		ND		ND		ND	
Herbicides		1						F	
No Herbicides detected in a	analyzed samples.	ND		ND		ND		ND	
Polychlorinated biphenyls a	iroclors								
No PCBs detected in analzy	ved samples.	ND		ND		ND		ND	
Target Analyte List (TAL) Me	tals						-		
Aluminum	77000	53600		29400		29200		38400	
Antimony	31	0.35	U	0.17	U	0.22	J	0.37	U
Arsenic	11	4.4		4.8		5.4		5.8	
Barium	15000	174		114		117		196	
Beryllium	160	0.94	J	0.78		0.95		1.2	
Calcium	-	581		672		659		1140	
Chromium	214	82.5		92.9		108		120	
Cobalt	34	41.4		23.3		23.3		59.8	
Copper	3100	38.9		25		32.3		61.7	
Iron	74767	51000		32800		35800		49800	
Lead	400	34.4	В	16.8	В	39.8	В	82.4	В
Magnesium	-	576		896		851		1000	
Manganese	2100	772		578		564		1100	
Nickel	1500	27.9		26.6		23.8		52.2	
Potassium	•	510		490		407		546	
Selenium	390	0.53	J	0.460	J	0.58	J	0.73	J
Thallium	0.78	0.14	J	0.14	J	0.16	J	0.18	J
Vanadium	390	126		79.5		86.7		115	
Zinc	23000	39.6		24.4		37.7		46.1	
Mercury	11	0.080		0.057		0.12		0.098	
	00	0.00		0.01		0.15		0.00	
Cyaniae, Iotal	23	0.29	J	0.21	J	0.15	U	0.23	J

Notes:

1. Reporting Level: DNREC-Remediation Section (RS), February 2022, "Reporting Level Table."

2. mg/kg = milligrams per kilogram.

3. "-" : No applicable DNREC-RS Reporting Level.

4. Bold and highlighted values exceed the applicable DNREC-RS Reporting Level.

5. Soil samples analyzed for TCL VOCs were collected as discrete samples. Samples analyzed for TCL SVOCs, TCL pesticides, herbicides,

PCBs, and TAL Metals were collected as composite samples.

6. Laboratory data abbreviations:

U or ND: Indicates the analyte was analyzed for but not detected.

J: Result is less than the Reporting Limit but greater than or equal to the Method Detection Limit (MDL) and the concentration is an approximate value.

B : Compound was found in the blank and sample.

Verdantas, LLC Project No. 16530

Table 2 - Confirmatory Analytical Detections for Cobalt November and December 2022 Sampling Events Rodney Reservoir Site, Wilmington, Delaware

Client ID	DNREC-RS	SB-1	SB-2	SB-3	SB-4	SB-5	SB-6	SB-7	SB-8	SB-9	SB-10	SB-11	SB-12	SB-13	SB-14	SB-15	SB-16	SB-17	SB-18	SB-19
Lab Sample ID	Reporting Levels	460-269445-1	460-269445-2	460-269445-3	460-269445-4	460-271751-1	460-271751-2	460-271751-3	460-271751-4	460-271751-5	460-271751-6	460-271751-7	460-271751-8	460-271751-9	460-271751-10	460-271751-11	460-271751-12	460-271751-13	460-271751-14	460-271751-15
Sampling Date	Soil	11/7/2022	11/7/2022	11/7/2022	11/7/2022	12/19/2022	12/19/2022	12/19/2022	12/19/2022	12/19/2022	12/19/2022	12/19/2022	12/19/2022	12/19/2022	12/19/2022	12/19/2022	12/19/2022	12/19/2022	12/19/2022	12/19/2022
Matrix	February 2022	Soi	Soil	Soil	Soil	Soi	Soi	Soi												
Unit	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
		Result Q																		
							·							·		·				
Cobalt	34	41.4	23.3	23.3	59.8	28.8	27.0	23.5	<u>38.4</u>	19.3	26.6	53.3	27.2	18.5	24.1	39.5	32.3	31.6	9.0	0.18 U
1		· · · · ·	·																	

 Notes:

 1. Reporting Level: DNREC-Remediation Section (RS), February 2022, "Reporting Level Table."

 2. mg/Rg = milligrams per kilogram.

 3. U: Indicates that the analytek was analyzed for but not detected.

 4. Bold and highlighted values exceed the applicable DNREC-RS Reporting Level.

Figures

Attachment A ProUCL Input and Output

	A	В	С	D	E	F	
1	Cobalt	D_Cobalt					
2	41.4	1					
3	23.3	1					
4	23.3	1					
5	59.8	1					
6	28.8	1					
7	27	1					
8	23.5	1					
9	38.4	1					
10	19.3	1					
11	26.6	1					
12	53.3	1					
13	27.2	1					
14	18.5	1					
15	24.1	1					
16	39.5	1					
17	32.3	1					
18	31.6	1					
19	9	1					
20	0.18	0					
21							
22							

	A B C	D E	F	G	H		J	K	L
1		UCL Statis	ucs for Data	Sets with No	n-Detects				
2		1							
3	User Selected Options	5							
4	Date/Time of Computation	ProUCL 5.2 1/3/2023 1:3	1:09 PM						
5	From File	WorkSheet.xls							
6	Full Precision	OFF							
7	Confidence Coefficient	95%							
, 8	Number of Bootstrap Operations	2000							
0									
9 10	Cobalt								
11									
12			General	Statistics					
12	Tota	I Number of Observations	19			Numbe	er of Distinct	Observations	18
1/		Number of Detects	18				Number of	Non-Detects	1
14	N	umber of Distinct Detects	17			Numb	er of Distinct	Non-Detects	1
15		Minimum Detect	9				Minimun	n Non-Detect	0.18
16		Maximum Detect	59.8				Maximun	n Non-Detect	0.18
1/		Variance Detects	153.6				Percent	Non-Detects	5 263%
18		Moon Detects	20.29				i elcent	SD Detects	12 20
19		Median Detects	27.1					SD Delects	0.409
20		Nieulan Delects	27.1				17		0.400
21		Skewness Detects	0.9					tosis Detects	1.019
22		Mean of Logged Detects	3.333				SD of Log	gged Detects	0.428
23		N	100F T		<u> </u>				
24				t on Detects	Only	<u>.</u>			
25		Shapiro Wilk Test Statistic	0.929			Snapiro wi	IK GOF Test		
26	1% 5	Shapiro Wilk Critical Value	0.858	De	etected Data a	appear Norr	mai at 1% Sig	gnificance Lev	vel
27		Lilliefors Test Statistic	0.162			Lilliefors	GOF Test		
28		1% Lilliefors Critical Value	0.235	De	etected Data a	appear Norr	mal at 1% Sig	gnificance Lev	vel
29		Detected Data a	appear Norm	al at 1% Sigr	nificance Leve)			
30									
31	Kaplar	n-Meier (KM) Statistics usin	ig Normal Ci	itical Values	and other No	nparametrio	c UCLs		
32		KM Mean	28.79			KI	M Standard E	Error of Mean	3.193
33		90KM SD	13.52				95% KN	И (BCA) UCL	34.04
34		95% KM (t) UCL	34.33			95% KM (F	Percentile Bo	otstrap) UCL	33.98
35		95% KM (z) UCL	34.05		otstrap t UCL	34.74			
36		90% KM Chebyshev UCL	38.37		ebyshev UCL	42.71			
37	97	7.5% KM Chebyshev UCL	48.73			1	99% KM Che	ebyshev UCL	60.56
38									
39		Gamma GOF	Tests on De	tected Obser	rvations Only				
40		A-D Test Statistic	0.357		An	derson-Da	rling GOF Te	est	
41		5% A-D Critical Value	0.742	Detected	d data appear	Gamma D	istributed at !	5% Significan	ce Level
42		K-S Test Statistic	0.14		K	olmogorov-	-Smirnov GO	F	
43		5% K-S Critical Value	0.204	Detected	d data appear	Gamma D	istributed at !	5% Significan	ce Level
44		Detected data appear	Gamma Dis	tributed at 59	% Significance	e Level			
45									
46		Gamma	Statistics on	Detected Da	ata Only				
47		k hat (MLE)	6.344			k	star (bias co	rrected MLE)	5.324
48		Theta hat (MLE)	4.789			Theta	star (bias co	rrected MLE)	5.707
49		nu hat (MLE)	228.4				nu star (bi	as corrected)	191.7
50		Mean (detects)	30.38						
51				1					
52		Gamma ROS	Statistics us	ing Imputed	Non-Detects				
53	GROS ma	y not be used when data se	et has > 50%	NDs with m	any tied obse	rvations at	multiple DLs		
54	GROS may not be use	d when kstar of detects is s	mall such a	s <1.0, espec	cially when the	e sample si	ze is small (e	e.g., <15-20)	
5-				-					

	A B C D E	F		L
55	For such situations, GROS	nethod may	yield incorrect values of UCLs and BTVs	
56		any true whe		
57	For gamma distributed detected data, BTVs a		y be computed using gamma distribution on KM estimates	20.10
58	Minimum	7.155	Mean	29.16
59	Maximum	59.8	Median	27
60	SD	13.17	CV	0.452
61	k hat (MLE)	4.638	k star (bias corrected MLE)	3.941
62	I heta hat (MLE)	6.287	I heta star (bias corrected MLE)	7.399
63	nu hat (MLE)	176.3	nu star (bias corrected)	149.8
64	Adjusted Level of Significance (β)	100.5	Adjusted Obj Opuera Malus (140.70, 0)	100.0
65	Approximate Chi Square Value (149.76, d)	122.5	Adjusted Chi Square Value (149.76, β)	120.3
66	95% Gamma Approximate OCL	33.00	95% Gamma Aujusteu UCL	30.3
67	Estimates of G	amma Parar	meters using KM Estimates	
68		28 70		13 52
69	Variance (KM)	182.0	SE of Mean (KM)	3 103
70	k hat (KM)	102.5	K star (KM)	3 852
71	nu hat (KM)	172.2	nu star (KM)	146.4
72	thata hat (KM)	6 353	theta star (KM)	7 475
73	80% gamma percentile (KM)	39.87	90% gamma percentile (KM)	18.46
74	95% gamma percentile (KM)	56.38	99% gamma percentile (KM)	73 32
75		00.00		70.02
76	Gamr	a Kaplan-Me	eier (KM) Statistics	
77	Approximate Chi Square Value (146.37 g)	119.4	Adjusted Chi Square Value (146.37 ß)	117.3
78	95% KM Approximate Gamma UCI	35.29	95% KM Adjusted Gamma UCI	35.94
79		00.20		
8U 01	Lognormal GC	F Test on De	etected Observations Only	
82	Shapiro Wilk Test Statistic	0.943	Shapiro Wilk GOF Test	
83	10% Shapiro Wilk Critical Value	0.914	Detected Data appear Lognormal at 10% Significance Le	evel
84	Lilliefors Test Statistic	0.167	Lilliefors GOF Test	
85	10% Lilliefors Critical Value	0.185	Detected Data appear Lognormal at 10% Significance Le	evel
86	Detected Data ap	pear Lognorr	mal at 10% Significance Level	
87				
88	Lognormal RO	S Statistics L	Jsing Imputed Non-Detects	
89	Mean in Original Scale	29.32	Maan in Log Saala	2 20
90	CD in Original Casta		Mean in Log Scale	3.20
	SD in Original Scale	12.91	SD in Log Scale	0.477
91	95% t UCL (assumes normality of ROS data)	12.91 34.45	SD in Log Scale 95% Percentile Bootstrap UCL	0.477 34.15
91 92	95% t UCL (assumes normality of ROS data) 95% BCA Bootstrap UCL	12.91 34.45 34.55	SD in Log Scale SD in Log Scale 95% Percentile Bootstrap UCL 95% Bootstrap t UCL	0.477 34.15 34.95
91 92 93	95% t UCL (assumes normality of ROS data) 95% BCA Bootstrap UCL 95% H-UCL (Log ROS)	12.91 34.45 34.55 37.22	SD in Log Scale 95% Percentile Bootstrap UCL 95% Bootstrap t UCL	0.477 34.15 34.95
91 92 93 94	95% t UCL (assumes normality of ROS data) 95% BCA Bootstrap UCL 95% H-UCL (Log ROS)	12.91 34.45 34.55 37.22	SD in Log Scale SD in Log Scale 95% Percentile Bootstrap UCL 95% Bootstrap t UCL	0.477 34.15 34.95
91 92 93 94 95	95% t UCL (assumes normality of ROS data) 95% BCA Bootstrap UCL 95% H-UCL (Log ROS) Statistics using KM estimates	12.91 34.45 34.55 37.22	SD in Log Scale 95% Percentile Bootstrap UCL 95% Bootstrap t UCL	3.28 0.477 34.15 34.95
91 92 93 94 95 96	95% t UCL (assumes normality of ROS data) 95% BCA Bootstrap UCL 95% H-UCL (Log ROS) Statistics using KM estimates KM Mean (logged)	12.91 34.45 34.55 37.22 on Logged D 3.067	SD in Log Scale 95% Percentile Bootstrap UCL 95% Bootstrap t UCL 95% Bootstrap t UCL Wata and Assuming Lognormal Distribution	3.28 0.477 34.15 34.95 21.48
91 92 93 94 95 96 97	95% t UCL (assumes normality of ROS data) 95% BCA Bootstrap UCL 95% H-UCL (Log ROS) Statistics using KM estimates KM Mean (logged) KM SD (logged)	12.91 34.45 34.55 37.22 on Logged D 3.067 1.198	SD in Log Scale 95% Percentile Bootstrap UCL 95% Bootstrap t UCL 95% Bootstrap t UCL KM Geo Mean 95% Critical H Value (KM-Log)	3.28 0.477 34.15 34.95 21.48 2.903
91 92 93 94 95 96 97 98	95% t UCL (assumes normality of ROS data) 95% BCA Bootstrap UCL 95% H-UCL (Log ROS) Statistics using KM estimates KM Mean (logged) KM Standard Error of Mean (logged)	12.91 34.45 34.55 37.22 on Logged D 3.067 1.198 0.283	SD in Log Scale 95% Percentile Bootstrap UCL 95% Bootstrap t UCL 95% Bootstrap t UCL KM Geo Mean 95% Critical H Value (KM-Log) 95% H-UCL (KM -Log)	3.28 0.477 34.15 34.95 21.48 2.903 99.92
91 92 93 94 95 96 97 98 99	SD In Original Scale 95% t UCL (assumes normality of ROS data) 95% BCA Bootstrap UCL 95% H-UCL (Log ROS) Statistics using KM estimates KM Mean (logged) KM SD (logged) KM SD (logged)	12.91 34.45 34.55 37.22 on Logged D 3.067 1.198 0.283 1.198	SD in Log Scale 95% Percentile Bootstrap UCL 95% Bootstrap t UCL 95% Bootstrap t UCL Vata and Assuming Lognormal Distribution KM Geo Mean 95% Critical H Value (KM-Log) 95% H-UCL (KM -Log) 95% Critical H Value (KM-Log)	3.28 0.477 34.15 34.95 21.48 2.903 99.92 2.903
91 92 93 94 95 96 97 98 99 100	SD In Original Scale 95% t UCL (assumes normality of ROS data) 95% BCA Bootstrap UCL 95% H-UCL (Log ROS) Statistics using KM estimates KM Mean (logged) KM SD (logged) KM SD (logged) KM SD (logged) KM SD (logged)	12.91 34.45 34.55 37.22 on Logged D 3.067 1.198 0.283 1.198 0.283	SD in Log Scale 95% Percentile Bootstrap UCL 95% Bootstrap t UCL 95% Bootstrap t UCL Rata and Assuming Lognormal Distribution KM Geo Mean 95% Critical H Value (KM-Log) 95% Critical H Value (KM-Log) 95% Critical H Value (KM-Log)	3.28 0.477 34.15 34.95 21.48 2.903 99.92 2.903
91 92 93 94 95 96 97 98 99 100 101	95% t UCL (assumes normality of ROS data) 95% BCA Bootstrap UCL 95% H-UCL (Log ROS) Statistics using KM estimates KM Mean (logged) KM Standard Error of Mean (logged) KM SD (logged) KM Standard Error of Mean (logged) KM SD (logged)	12.91 34.45 34.55 37.22 on Logged D 3.067 1.198 0.283 1.198 0.283	SD in Log Scale 95% Percentile Bootstrap UCL 95% Bootstrap t UCL 95% Bootstrap t UCL Wata and Assuming Lognormal Distribution KM Geo Mean 95% Critical H Value (KM-Log) 95% H-UCL (KM -Log) 95% Critical H Value (KM-Log)	3.28 0.477 34.15 34.95 21.48 2.903 99.92 2.903
91 92 93 94 95 96 97 98 99 100 101	SD in Original Scale 95% t UCL (assumes normality of ROS data) 95% BCA Bootstrap UCL 95% H-UCL (Log ROS) Statistics using KM estimates KM Mean (logged) KM SD (logged) KM SD (logged) KM SD (logged) KM SD (logged)	12.91 34.45 34.55 37.22 on Logged D 3.067 1.198 0.283 1.198 0.283 1.198	SD in Log Scale 95% Percentile Bootstrap UCL 95% Bootstrap t UCL 95% Bootstrap t UCL Vata and Assuming Lognormal Distribution KM Geo Mean 95% Critical H Value (KM-Log) 95% H-UCL (KM -Log) 95% Critical H Value (KM-Log) 95% Critical H Value (KM-Log) 95% Critical H Value (KM-Log)	3.28 0.477 34.15 34.95 21.48 2.903 99.92 2.903
91 92 93 94 95 96 97 98 99 100 101 102 103	SD in Original Scale 95% t UCL (assumes normality of ROS data) 95% BCA Bootstrap UCL 95% H-UCL (Log ROS) Statistics using KM estimates KM Mean (logged) KM SD (logged) KM Standard Error of Mean (logged) KM SD (logged) KM Standard Error of Mean (logged) KM Standard Error of Mean (logged)	12.91 34.45 34.55 37.22 on Logged D 3.067 1.198 0.283 1.198 0.283 1.198 0.283	SD in Log Scale 95% Percentile Bootstrap UCL 95% Bootstrap t UCL 95% Bootstrap t UCL Wata and Assuming Lognormal Distribution KM Geo Mean 95% Critical H Value (KM-Log) 95% H-UCL (KM -Log) 95% Critical H Value (KM-Log) 95% Critical H Value (KM-Log)	3.28 0.477 34.15 34.95 21.48 2.903 99.92 2.903
91 92 93 94 95 96 97 98 99 100 101 102 103 104	SD in Original Scale 95% t UCL (assumes normality of ROS data) 95% BCA Bootstrap UCL 95% H-UCL (Log ROS) Statistics using KM estimates KM Mean (logged) KM SD (logged) KM SD (logged) KM SD (logged) KM SD (logged) KM Standard Error of Mean (logged) KM Standard Error of Mean (logged) CDL/2 Normal	12.91 34.45 34.55 37.22 on Logged D 3.067 1.198 0.283 1.198 0.283 1.198 0.283 1.283	SD in Log Scale 95% Percentile Bootstrap UCL 95% Bootstrap t UCL 95% Bootstrap t UCL Vata and Assuming Lognormal Distribution KM Geo Mean 95% Critical H Value (KM-Log) 95% H-UCL (KM -Log) 95% Critical H Value (KM-Log)	3.28 0.477 34.15 34.95 21.48 2.903 99.92 2.903 3.031 4.021
91 92 93 94 95 96 97 98 99 100 101 102 103 104 105	SD in Original Scale 95% t UCL (assumes normality of ROS data) 95% BCA Bootstrap UCL 95% H-UCL (Log ROS) Statistics using KM estimates KM Mean (logged) KM SD (logged) KM SD (logged) KM SD (logged) KM SD (logged) KM SD (logged) KM Standard Error of Mean (logged) KM Standard Error of Mean (logged) KM Standard Error of Mean (logged) CDL/2 Normal Mean in Original Scale SD in Original Scale	12.91 34.45 34.55 37.22 on Logged D 3.067 1.198 0.283 1.198 0.283 1.198 0.283 DL/2 St 28.79 13.91	SD in Log Scale 95% Percentile Bootstrap UCL 95% Bootstrap t UCL 95% Bootstrap t UCL 95% Critical H Value (KM-Log) 95% H-UCL (KM -Log) 95% Critical H Value (KM-Log) 95% In Log Scale SD in Log Scale SD in Log Scale	3.28 0.477 34.15 34.95 21.48 2.903 99.92 2.903 3.031 1.381
91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106	SD in Original Scale 95% t UCL (assumes normality of ROS data) 95% BCA Bootstrap UCL 95% H-UCL (Log ROS) Statistics using KM estimates KM Mean (logged) KM SD (logged) KM Standard Error of Mean (logged) KM SD (logged) KM Standard Error of Mean (logged) El 20 in Original Scale	12.91 34.45 34.55 37.22 on Logged D 3.067 1.198 0.283 1.198 0.283 1.198 0.283 DL/2 St 28.79 13.91 34.32	tatistics DL/2 Log-Transformed SD in Log Scale SD in Log Scale 95% Percentile Bootstrap UCL 95% Bootstrap t UCL 846 and Assuming Lognormal Distribution KM Geo Mean 95% Critical H Value (KM-Log) 95% H-UCL (KM -Log) 95% Critical H Value (KM-Log) 95% Critical H Value (KM-Log) 95% Critical H Value (KM-Log) 95% H-UCL (KM -Log) 95% H-UCL (KM -Log) 95% H-UCL (KM -Log)	3.28 0.477 34.15 34.95 21.48 2.903 99.92 2.903 3.031 1.381 152.1
91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107	SD in Original Scale 95% t UCL (assumes normality of ROS data) 95% BCA Bootstrap UCL 95% H-UCL (Log ROS) Statistics using KM estimates KM Mean (logged) KM SD (logged) KM Standard Error of Mean (logged) KM SD (logged) KM Standard Error of Mean (logged) CDL/2 Normal Mean in Original Scale SD in Original Scale 95% t UCL (Assumes normality) DL/2 is not a recommended me	12.91 34.45 34.55 37.22 on Logged D 3.067 1.198 0.283 1.198 0.283 1.198 0.283 28.79 13.91 34.32 ethod, provid	SD in Log Scale 95% Percentile Bootstrap UCL 95% Bootstrap t UCL 95% Bootstrap t UCL 95% Critical H Value (KM-Log) 95% H-UCL (KM -Log) 95% Critical H Value (KM-Log) 95% H-Stat UCL ed for comparisons and historical reasons	3.28 0.477 34.15 34.95 21.48 2.903 99.92 2.903 3.031 1.381 152.1

	А	В	С	D	E	F	G	Н	_	J	K	L		
109					Nonparam	etric Distribut	tion Free UC	L Statistics						
110				Detected	l Data appea	ar Normal Dis	stributed at 19	% Significand	æ Level					
111														
112	2 Suggested UCL to Use													
113	95% KM (t) UCL 34.33													
114														
115	Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.													
116		Recom	nmendations	are based up	on data size	, data distrib	ution, and sk	ewness using	g results fron	n simulation s	tudies.			
117	Ho	owever, simu	lations resul	ts will not cov	er all Real W	/orld data se	ts; for additio	nal insight th	e user may v	want to consu	lt a statistic	ian.		
118														
119														
120														
121														
122														

Attachment B Risk Assessment DERAC Output

Site-specific Risk Resident Soil Inputs

Verieble	Resident Soil Default	Site-Specific
Variable A (PEE Dispersion Constant)	value	value
A (VE Dispersion Constant)	11 011	11 011
A (VE Dispersion Constant - mass limit)	11.911	11.011
B (PEE Dispersion Constant)	18 7762	18 7762
B (VE Dispersion Constant)	18 4385	18.4385
B (VF Dispersion Constant - mass limit)	18 4385	18 4385
City (PEE Climate Zone) Selection	Default	Default
City (VE Climate Zone) Selection	Default	Default
C (PEE Dispersion Constant)	216 108	216 108
C (VE Dispersion Constant)	209.7845	209.7845
C (VF Dispersion Constant - mass limit)	209.7845	209.7845
foc (fraction organic carbon in soil) g/g	0.006	0.006
F(x) (function dependent on U /U) unitless	0.194	0.194
n (total soil porosity) L/L	0.43396	0.43396
p (dry soil bulk density) g/cm ³	1.5	1.5
p, (dry soil bulk density - mass limit) g/cm ³	1.5	1.5
PEF (particulate emission factor) m ³ /kg	1359344438	1359344438
p _e (soil particle density) g/cm ³	2.65	2.65
Q/C _{wind} (g/m ² -s per kg/m ³)	93.77	93.77
Q/C _{ural} (g/m ² -s per kg/m ³)	68.18	68.18
Q/C _{url} (g/m ² -s per kg/m ³ - mass limit)	68.18	68.18
A _c (PEF acres)	0.5	0.5
A _c (VF acres)	0.5	0.5
A, (VF mass-limit acres)	0.5	0.5
AF _{0.2} (mutagenic skin adherence factor) mg/cm ²	0.2	0.2
AF _{2.6} (mutagenic skin adherence factor) mg/cm ²	0.2	0.2
AF _{6.16} (mutagenic skin adherence factor) mg/cm ²	0.07	0.07
AF _{16.26} (mutagenic skin adherence factor) mg/cm ²	0.07	0.07
AF _{ree,2} (skin adherence factor - adult) mg/cm ²	0.07	0.07
$AF_{rec.r}$ (skin adherence factor - child) mg/cm ²	0.2	0.2
AT _{res} (averaging time - resident carcinogenic)	365	365

Site-specific Risk Resident Soil Inputs

	Resident Soil	Sito Specific
Variable	Value	Value
BW _{aa} (mutagenic body weight) kg	15	15
BW, (mutagenic body weight) kg	15	15
BW ₆₁₆ (mutagenic body weight) kg	80	80
BW ₁₆₂₆ (mutagenic body weight) kg	80	80
BW _{resa} (body weight - adult) kg	80	80
BW _{resc} (body weight - child) kg	15	15
DFS _{recart} (age-adjusted soil dermal factor) mg/kg	103390	103390
DFSM (mutagenic age-adjusted soil dermal factor) mg/kg	428260	428260
ED _{re} (exposure duration) years	26	26
ED_{n_2} (mutagenic exposure duration) years	2	2
ED _{2.6} (mutagenic exposure duration) years	4	4
ED _{6.16} (mutagenic exposure duration) years	10	10
ED _{16.26} (mutagenic exposure duration) years	10	10
ED _{rec-a} (exposure duration - adult) years	20	20
ED _{rec.} (exposure duration - child) years	6	6
EF (exposure frequency) days/year	350	350
EF (mutagenic exposure frequency) days/year	350	350
EF _{2.6} (mutagenic exposure frequency) days/year	350	350
EF _{6.16} (mutagenic exposure frequency) days/year	350	350
EF _{16.26} (mutagenic exposure frequency) days/year	350	350
EF _{rec.a} (exposure frequency - adult) days/year	350	350
EF (exposure frequency - child) days/year	350	350
ET _{rec} (exposure time) hours/day	24	24
ET _{0.2} (mutagenic exposure time) hours/day	24	24
ET _{2.6} (mutagenic exposure time) hours/day	24	24
ET _{6.16} (mutagenic exposure time) hours/day	24	24
ET _{16.26} (mutagenic exposure time) hours/day	24	24
ET _{rec.a} (adult exposure time) hours/day	24	24
ET _{rec.} (child exposure time) hours/day	24	24
IFS _{recardi} (age-adjusted soil ingestion factor) mg/kg	36750	36750
IFSM _{resadi} (mutagenic age-adjusted soil ingestion factor) mg/kg	166833.3	166833.3

Site-specific Risk Resident Soil Inputs

Variable	Resident Soil Default Value	Site-Specific Value
IRS ₂₂ (mutagenic soil intake rate) mg/day	200	200
IRS _{2.6} (mutagenic soil intake rate) mg/day	200	200
IRS _{6.16} (mutagenic soil intake rate) mg/day	100	100
IRS _{16.76} (mutagenic soil intake rate) mg/day	100	100
IRS _{reca} (soil intake rate - adult) mg/day	100	100
IRS _{rec} (soil intake rate - child) mg/day	200	200
LT (lifetime) years	70	70
$SA_{n,2}$ (mutagenic skin surface area) cm ² /day	2373	2373
SA _{2.6} (mutagenic skin surface area) cm ² /day	2373	2373
SA _{6.16} (mutagenic skin surface area) cm ² /day	6032	6032
SA _{16.26} (mutagenic skin surface area) cm ² /day	6032	6032
SA _{rec-a} (skin surface area - adult) cm ² /day	6032	6032
SA _{rec} (skin surface area - child) cm ² /day	2373	2373
T (groundwater temperature) Celsius	25	25
Theta , (air-filled soil porosity) Lir/Li	0.28396	0.28396
Theta, (water-filled soil porosity) L $_{mater}/L_{coil}$	0.15	0.15
T (exposure interval) s	819936000	819936000
T (exposure interval) yr	26	26
U_{m} (mean annual wind speed) m/s	4.69	4.69
U, (equivalent threshold value)	11.32	11.32
V (fraction of vegetative cover) unitless	0.5	0.5

Chemical	CAS Number	Mutagen?	VOC?	RfD (mg/kg-day)	RfD Ref	RfC (mg/m ³)	RfC Ref	SF (mg/kg-day) ^{.1}	SF Ref	IUR (ug/m ³) ⁻¹	IUR Ref	ABS_	ABS	Volatilization Factor Unlimited Reservoir (m³/kg)
Cobalt	7440-48-4	No	No	3.00E-04	PPRTV Current	6.00E-06	PPRTV Current	-		9.00E-03	PPRTV Current	1	-	-
*Total Risk/Hl				-		-		-		-		-	-	-

Volatilization Factor Mass Limit (m³/kg)	Volatilization Factor Selected (m³/kg)	DA	Particulate Emission Factor (m ³ /kg)	Soil Saturation Concentration (mg/kg)	RBA	HLC (atm-m³/mole)	Henry's Law Constant (unitless)	H` and HLC Ref	Henry's Law Constant Used in Calcs (unitless)	Normal Boiling Point BP (K)	BP Ref	Critical Temperature T _c \ (K)	T_\ Ref
-	-	-	1.36E+09	-	1	-	-		-	3.20E+03	CRC	7.40E+03	YAWS
-	-	-	-	-	-	-	-		-	-		-	

D _{ia} \ (cm²/s)	D _{iw} \ (cm²/s)	Soil Concentration (mg/kg)	Child Ingestion Noncarcinogenic CDI (mg/kg-day)	Child Dermal Noncarcinogenic CDI (mg/kg-day)	Child Inhalation Noncarcinogenic CDI (mg/m ³)	Adult Ingestion Noncarcinogenic CDI (mg/kg-day)	Adult Dermal Noncarcinogenic CDI (mg/kg-day)	Adult Inhalation Noncarcinogenic CDI (mg/m ³)
-	-	34.33	4.39E-04	-	2.42E-08	4.11E-05	-	2.42E-08
-	-	-	-	-	-	-	-	-

Adjusted Ingestion Noncarcinogenic CDI (mg/kg-day) 1.33E-04	Adjusted Dermal Noncarcinogenic CDI (mg/kg-day)	Adjusted Inhalation Noncarcinogenic CDI (mg/m ³) 2.42E-08	Ingestion Carcinogenic CDI (mg/kg-day) 4.94E-05	Dermal Carcinogenic CDI (mg/kg-day)	Inhalation Carcinogenic CDI (ug/m ³) 8.99E-06	Child Ingestion HQ 1.46E+00	Child Dermal HQ	Child Inhalation HQ 4.04E-03	Child Total HI 1.47E+00
-	-	-	-	-	-	1.46E+00	-	4.04E-03	1.47E+00

Adult Ingestion HQ	Adult Dermal HQ	Adult Inhalation HQ	Adult Total HI	Adjusted Ingestion HQ	Adjusted Dermal HQ	Adjusted Inhalation HQ	Adjusted Total HI	Ingestion Risk	Dermal Risk	Inhalation Risk	Total Risk
1.37E-01	-	4.04E-03	1.41E-01	4.43E-01	-	4.04E-03	4.47E-01	-	-	8.10E-08	8.10E-08
1.37E-01	-	4.04E-03	1.41E-01	4.43E-01	-	4.04E-03	4.47E-01	-	-	8.10E-08	8.10E-08